
KSME Journal, Vol. 7, No. I, pp. 35-47, 1993

Analysis of a Flat Annular Crack under Shear Loading

Hyeon Gyu Beom * and Youn Young Earmme *
(Received July 14, 1992)

An annular crack in an infinite isotropic elastic solid under shear loading is analyzed.
General solution to the Navier's equilibrium equation is expressed in terms of three harmonic

functions. Employing the Hankel transform the harmonic functions are represented by the

solution of a pair of triple integral equations. The triple integral equations are reduced to a pair

of mixed Volterra-Fredholm integral equations, which are numerically solved. The stress
intensity factors of the annular crack under various shear loadings such as uniform radial shear,

linearly varying radial shear, uniform shear and linearly varying shear are calculated as the

Poisson's ratio j) and a/ b (a; inner radius, b; outer radius) vary.
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1. Introduction

Studies on three-dimensional crack have been
widely performed since the work by Sned­
don( 1946) for a penny-shaped crack. The results

of the analysis of three-dimensional crack by

many researchers are well documented recently in
Panasyuk et al.(l981). Especially the problem of
the annular crack has been an interesting subject

due to its potential application to a frequently

encountered banana-shaped crack (Moss and
Kobayashi, 1971) or a three-dimensional crack

blocked inside by a circular-shaped second phase
particle without which the crack would have been
penny-shaped. Smetanin( 1968) used an asym­

ptotic method to solve the problem of a flat

annular crack subjected to uniaxial tension. Sub­
sequently the analysis of the annular crack has
been carried out by Moss and Kobayashi( 1971),

Choi and ShieId(l982), Selvadurai and Singh
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( 1985) and Danyluk and Singh(l986).
These works, however, are concerned with the

annular crack under uniform pressure or torsion

because of simpler mathematics involved: For the
annular crack under uniform pressure or torsion,

it is necessary to determine mathematically a
single harmonic function. On the other hand, for

the annular crack subjected to remote uniform
shear (which is typical in application sense), the

problem has not been solved yet since this requir­
es a determination of two harmonic functions,
making the task quite complicated.

It is the purpose of this study to investigate the
problem of the annular crack in an infinite
isotropic elastic solid under shear loading. Thus

the crack front is in general under combined

mode II and mode III loading. General solution
to the Navier's equilibrium equation is expressed
in terms of three harmonic functions. Employing
the Hankel transform the harmonic functions are
represented by a pair of triple integral equations.
In cotrast to the previous works mentioned above,
where a single harmonic function is determined,
we here have to determine essentially two har­
monic functions. Guided by a method for solving
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a triple integral equation proposed by Co­
oke(l963), we reduce a pair of the triple integral

equations to a pair of mixed Volterra-Fredholm

intergral equations, which are numerically solved
by using the Simpson quadrature rule. The stress

intensity factors of the annular crack under var­

ious shear loadings such as uniform radial shear,
linearly varying radial shear, uniform shear and

linearly varying shear are calculated as the Pois­

son's ratio v and a/ b (a; inner radius, b; outer

radius) vary.

2. Formulation of the Problem

Suppose an annular crack is embedded in an
infinite elastic solid, as shown in Fig. 1. The

annular crack with the inner radius a and outer

radius b lies in the plane z=O. Equal and
opposite shear tractions are applied on the crack

surface. The displacements u satisfy the Navier's

equation of equilibrium:

where v is the Possion's ratio and e denotes the

dilatation. Introducing cylindrical coordinates
(r, B, z), a general solution of (I) is expressed in

terms of three harmonic functions as

where f1 is the shear modulus and ¢' X and IJf are
harmonic functions (See Appendix A). The corre­

sponding stress components are given by
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Arbitray loads applied to the crack surface can
be expressed as a sum of symmetric and skew­

symmetric parts. In this study. it is analyzed only
the case in which the crack is sujected to a skew­

symmetric loading. Due to the symmetry of the

problem about the plane z=O. it is required that

Ur and Ue be odd functions fo z, while u z is even
in z. Therefore, we can restrict our attention to
the analysis of a single half-space region (z::::: 0) of
the infinite space. The boundary conditions on
the crack surface and along the plane of symmetry

to be satisfied are:

T

Fig. 1 An annular crack with mner radius a and
outer radius b

(Jz(r, B, 0) =0. r:::::O; 0s::B<2Jr.
fzr(r, B, 0) =qc(r, B),

a<r<b; Os::B<2Jr.
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'l"ze(r, e, 0) =qs(r, e),
a<r<b; O~e<2J[,

Ur(r, e, O)=Ue(r, e, 0)=0,
O~r<a, r>b; o~e<2J[, (4)

where qc( r, e) and qs( r, e) are the given func­
tions. In addition, the displacements and stresses

approach zero as j r 2+Z2 -> 00. The specified

functions qc( r, e) and qs( r, e) are expanded into
cosine and sine Fourier series, respectively:

00
qc( r, e} =, L: an( r} cos ne,

n=O
00

qs(r, e}= L: bn(r) sin ne.
n~O

(5)

100s[ l-=-lv Dn(s) + En C,) ]In-I (1'5) ds

=f[an(r)-bn(r)], a<r<b,

(OOs[-l-L - Dn(s) + En (s)] In+1 (rs) ds}o - v .

=flan(r)+bn(r}], a<r<b, (8a)

1°O[ - Dn(s) +En (s) ]In-d rs) ds =0,

O~r<a, r >b,

1°O[Dn(S) + En (s) ]In+1 (rs) ds=O,

O~r<a, r>b, (8b)

where

For simplicity of presentation, we assume here

that qc( r, e} and qs( r, e} are even and odd
functions of e, however, this method can be easily

modified to account for arbitrary qc( r, e) and qs

(r, m.
In the region z;;:;: 0, the appropriate forms of the

three harmonic functions rj;, Wand X are

obtained from the Fourier-Hankel relations as
(Kassir and Sih, 1975)

rj;(r, e, z}= ~cos ne (OO_An~sL
n~O }o s

exp( -SZ)Jn(rs) ds,

W(r, e, z)== ~sin ne (00 Bn~sL
n~1 }o s

exp(-sz)Jn(rs)ds,

00 100

Cn(s)x(r, e, z}= L:cos ne-----
n~O 0 s

exp(-sz)Jn(rs)ds, (6)

where In denotes the Bessel function of order n
and An, B n and en are to be determined so as to
satisfy the boundary conditions. In passing, it is
worth mentioning that when the evenness and

oddness in e for the shear loads in (5) are inter­

changed, the cos n(J and sin ne in (6) are also
interachanged.

Since I1z vanishes on z= 0 (boundary condi­
tion (4}),

2(I-v) An (s) + scn (s) =0,

and the other boundary conditions (4) lead to a
pair of simultaneous triple integral equations:

(8c)

and 11=0, L 2. 3, .... In obtaining (8a) and
(8b), the recurrence relations of the Bessel func­

tion

-drLIn (rs) = SJn-1 (rs) _.!iIn (rs),r r
rsIn (rs) =?--[jn-I (rs) +In+1 (rs)], (9)_11

and (7) have been used. For thl~ case of the

Poisson's ratio v=O, it can be shown that (8a)
and (8b) are reduced to two decoupled triple

integral equations, as discussed by Cooke( 1963).

Also, it can be verified that for 11=0 (radial
shear), (8a) and (8b) are reduced to a triple
integral equation.

3. Solution of Simultaneous Triple
Integral Equations

Adopting a method which is in fact an exten­
sion of the technique proposed by Cooke(l963), it
can be shown that a pair of the simultaneous
triple integral Eqs. (8a) and (8b) can be reduced

to a pair of the mixed Volterra-Fredholm integral
equations. The solution procedure is lengthy and

tedious, which is briefly described as follows.
Details required for the solution are presented in
Appendix B. Let
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(l3b)

.,Cs[ l-=-ll/Dn(s) +En(s) ]]H(rs)ds

j
II ( r). 0s r < a.

= Iz(r). a<r<b.
13(r). r>b.

;:00s[ 1~ l/ Dn(s) + En(s) ]]n+l(rs) ds

j
gl (r). 0s r < a.

= gz(r). a< r< b.
g3(r). r>b. (10)

where II (r). 13 (r). gl (r) and g3 (r) are to be
determined while Iz (r) and gz (r) are given by

Iz(r) =l/2[an(r) -bn(r)] and gz(r) =1/2[an
(r) +bn(r)]. respectively. n=1,2,3,'''' Em­
ploying the Hankel inversion theorem. we obtain
from (10)

1- l/ 31Ai•1

Dn(s)=-2-,~" tl[-li(tl)]n-l(tlS)
- 1

+ gi (tl) ] n+ I (tls) ]&.

En (s) = ~ ~l,Ai.1 tl[ji (,.1)]n-I (tls)

+g,.(tl)]n+l(tlS)]&. (II)

where Al =0. tlz= a. ,.13= b. ,.14 = 00, Substituting
(II) into (8b). it is found that

tll"i.1 tl[ (2 - l/) Ii (,.1) Ln-I,n-I (r. A)

+l/gi(A)Ln-I,n+l(r. ,.1)]&=0.
Osr<a. r<b,

3 (Aid

~I)'i tl[l/Ii (,.1) Ln+l,n-1 (r. ,.1)

+ (2-l/)gi(A) Ln+l,n+1 (r. ,.1) ]dA=O.
Osr<a. r>b. (12)

where Ln,m (r. ,.1) is the Weber-Schafheitlin inte­

gral defined as Ln,m(r. A) = ;:oo]n(rs)Jm(tls)ds.

With the help of the integral representation of the

Weber-Schafheitlin integral Ln,m (r. ,.1). it can be
shown that (12) leads to the Abel's integral Eq.
(B7). which appeared in Appendix B. Solving the
Abel's integral Eq. (B7). we get the following
mixed Volterra-Fredholm integral equations (See
Appendix B for details):

szn-2[ (l/-2)FI(s) + l/GI(s) + (l/-2)

1
a

1 1a
1 ]8 t FI (t)dt-l/(2n-1) 8 tGI(t)dt

+ 1°O{PI3(S. t)F3(t)+PI4 (S. t)G3(t)}dt

=Hr(s), O<s<a,

szn-Z[l/F1(s) + (l/-2) Gl(S)]- 2l/n
s

;:8tzn-2FI(t)dt+ 1°O{Pz3(s. t)F3(t)

+ Pz4 (s. t) G (t) }dt =Hz (s). 0< s < a,

s-zn+z[ (l/ - 2) F3(s) + l/G (s)] - 2l/ns

100 G(t) (a
8 ----pn-dt + )0 {HI (s. t) F I (t)

+ Hz (s. t) G1 (t) }dt

=H3 (s), b<s< 00.

s-zn+z[l/F3(S) + (l/-2) G(s) (2n+ 1) l/
SZ

18tF3(t) dt- l/,;;218tG(t) dt]

+ ;:a{P41 (s. t) FI(t) + P4Z (s. t) GI (t) }dt

=H4(s). b<s<oo. (l3a)

where Fi(s) and Gi(s) (i=l. 3) respectively are
defined by

F (s) =szl
a

II (tl) &
I 8 tlnJtlz-sz'

G ( ) - 21a gl (tl) &
I S -s 8 tlnJ tlZ-s2 '

F ( ) =18tlnI3(tl) &
3S ~.

b V S- - /l

G3 (S) = 18

tlJt}-t,

The kernels Pij(s. t) and Hi(s) are presented in
Appendix B. Regarding (l3b) as the Abel's inte­

gral equation for 1,(,.1) and g'(tl) (i= I. 3), 1,(,.1)
and gi(tl) (i= I. 3) are written in terms of F,(s)
and Gi(S) as

II (tl) = -~tln-.!L1a F1(s) ds •
7[ & A j S2_tlZ

(,.1) = -_£tl n-.!L1
a GI (S) ds

gl 7[ & A sJSZ-tlZ'

13(tl) =~tl-n-.!L1A sF3(s) ds •
7[ & b j tlZ-S Z
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Once F1 (s), Gl(S), F3(s) and G3(S) are ob­
tained from (13a), the displacements and stresses
can be calculated.

Kl=limhiT(a-r) fzr(r, 6',0),r-a-

Kl= limjZJr( r - b)'fzr (r, (), 0),
r-b+

is reduced to

( 18)

4. Numerical Result and Discussion

where

The expression for the stress intensity factor at
the inner edge and outer edge of the crack defined
as
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Fig. 3 Stress intensity factor K 2 at the inner (super­

script a) and outer (superscript b) for annular

crack under fzr = - Tl-~-
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alb
Fig. 2 Stress intensity factor K2 at the inner (super­

script a) and outer (superscript b) for annular
crack under Tzr= - To

0< r< a,
r>b.

( 17b)

4.1 Radial shear
Consider an annular crack subjected to radial

shear rzr=ao(r). In this case, (8a) and (8b) are
reduced to the following equation:

100

sDn(s) Jl (rs) ds = 12" J) ao (r),

a<r<b, (15)

100Dn(S)Jl(rs)ds=0, O~r<a, r>b,

En(s) =0. (16)

The equation above is similar to that for the
torsional problem investigated by Danyluk and
Singh( 1986). Following Danyluk and Singh
(1986), it is obtained that
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Kl=limJ2Jr(r-b) fzo(r, e, 0). (20)
r-b+

where i=1 for O::;;r<a and i=3 for r>b.

Using integration by parts, it is found from (13b)

with n=l, (18) (20) and (21) that

(24)

(25)

1
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k:, v= 0.3
k:. v= 0.5

kt v= 0.0
k~. v= 0.3
k~, v= 0.5

0.5

0.2 0.4 0.6 0.8

alb
Stress intensity factor k2 at the inner (super­
script a) and outer (superscript b) for annular
crack under fzx = - fo

2.51r-----------,

2

kf= brGl(a-)+Fl(a-)],
v Jra

kf= brFl (a-) - G1 (a-)],
v Jra

M= krGJ(b+) +F3(b+)],

M= krF3(b+) - GJ(b+)]' (23)

Using (22) - (24), it is obtained that

Kl=~ (bcose2-))vli '
Kb- 4))-4 (b . e
3- 2-)) '17m ,

In the limiting case as a -> 0, the integral Eq.
(C I) is reduced to a pair of Volterra equation,
and the solution is given as (See Appendix D)

F3(S)=fO(S-Js2_b2),

GJ(s)=-))- fob
2

2-)) s .

Fig. 4

which correspond to the stress intensity factors for

a penny-shaped crack with radius b under uni­
form shear (See Kassir and Sih, 1975).

A numerical solution of (CI)-(C4), which

appeared in Appendix Co may be obtained by

(19)

(21 )

K 2b=COseM,

K 3
b = -sinekf, (22)

K 2a=cosekf,

K 3
a

= -sin8k:\',

where

It can be shown that fzAr, e, 0) and fzo(r, e,

0) are given by

fzA r, e, O)={g,( r)+ Ii (r) }cose,
fzo(r, e, O)={gi(r)- f,(r)}sine,

Kb- 4 F3 (b+)
2 -1-)) bW'

For the cases of ao( r) = - fo (uniform radial

shear) and ao( r) = - n ~ (linearly varying radial

shear) respectively, numerical computation for

the stress intensity factor are carried out. (The

details will be described later.) In Fig. 2 and Fig.
3, the stress intensity factor K 2 at the inner edge
(superscript a) and outer edge (superscript b) of

the crack for the case of ao( r) = - fo and ao( r) =

- n ~, respectively, is plotted as a function of a/

b. The numerical result for the case of ao( r) =

- n ~ is in agreement with that for the torsional

problem investigated by Choi and Shield( 1982).

4.2 Shear load
Consider an annular crack subjected to a uni­

form shear fzx = - fo· In this case, al = - fo, bl = fo
and an and bn for n =1= I are all zero, since the
boundary conditions are given by qc(r, e)= - fo

case and qs(r, e)= foSine. Substituting n=l,

12=-fo and g2=0 into (13a), (l3b), (810) and
(81 I), we have the triple integral equation (C I),

which appeared in Appendix C where the kernels

Pij(s, t) and H,(s) are given explicitly as a func­

tion of sand t (or s).

The stress intensity factor K 2 at the inner and
outer edge of the crack is already defined by (18)

and K3 is given by the following form:

K 3a=limJ2Jr(a-r)fzo(r, e, 0),
r~a-
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Fig. 6
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Stress intensity factor k3 at the inner (super­
script a) and outer (superscript b) for annular
crack under rzx= ~ ro

Fig. 5

using some appropriate methods to evaluate the

integral on the left hand side of (C I). Since the

terms with varyi~g integration range appear on
the left hand sides of (C I), the integrals are

approximately evaluated by means of the Simp­
son quadrature rule. For the convenience of the

numerical calculation, we introduce new variable

7} defined by s=a7} for F1(s) and G1(s) and s

=bl7} for F 3(s) and G3(s). The mixed Volterra­
Fredholm integral equation (C I) is reduced to

the system of linear algebraic equations in F 1

(a7}k), Gl(a7}k), F 3(bl7}k) and G3(bl7}k) for select­
ed values of 7}k' which are solved numerically. In
Fig. 4 and Fig. 5, the numerical results of the

stress intensity factors k2 at the inner and outer

points (denoted by kf and k!l respectively) and
k3 (denoted by kf and M respectively) are
shown as a function of alb with various Poisson'

s ratio 1/. In the limiting case as a -> 0, the result
at the outer points is well compared with the case

of the penny shaped crack, and kf and M ap­
proach infinity. The values k2 and k3 for the small
c at the point of the inner edge are greater than at
the corresponding point of the outer edge.

Now we consider and annular crack subjected

2.5.-------------~

2

kt 1/= 0.0
kt v= 0.3
k b

• 1/= 0.5

o+--.--.-.-.,-.,-.,--,.--,---,-...:l
o 0.2 0.4 0.6 0.8 1

alb
Fig. 7 Stress intensity factor k3 at the inner (super­

script a) and outer (superscript b) for annular

crack under rzx = ~ rl ~

to shear traction (linearly varying shear) f zx =

- rt ~. The solution procedure is similar to the
case of uniform shear. The integral equation, the

kernels Pu(s, t) and Hi(s) for this problem are
presented in Appendix C. In Fig. 6 and Fig. 7,
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the numerical result of the stress intensity factor is

shown as a function of alb with various Poisson'
s ratio y. In the limiting case as a -> 0, the

numerical result for kf and kt is in agreement
with that for the penny-shaped crack (under

linearly varying sherar) found in Kassir and

Sih(l975).

5. Conclusion

An annular crack in an infinite isotropic elastic

solid under shear loading is analyzed. In terms of

mathematical difficulty, this work essentially re­
quires determination of two harmonic functions

in contrast to the determination of a single har­
monic function in the previous works with the
same geometry but under tensile or torsional

loading. The solution method proposed here is

amenable to easy numerical computation and the
results under various shear loadings are present­
ed. In particular, this work contains the result of

some of the previous works as a limiting case.
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where X is a harmonic function. Put

ZfJ.Ul =X3¢,1 +X.l + 1Jfj,
ZfJ.U2=X3¢,2+ X.2+ 1Jf2.

(A5)

(A6)

(A7)

(A8)

M n•n - 1( r, 11) is expressed in terms of the hyper­
geometric function (Watson, 1944) as

Mn ,n-l( r, 11) =

Il n- 1r(n-l/Z)
Zr n lr<3/Z)r(n) F(n-1/Z, -1/Z
n;1l2/ r 2) , 0< 11 < r,
rnr<n-l/Z)
Zllnr(n+ 1) F(n-1/2 liZ,

n+1;r2/1l2), O<r<ll.
(B2)

where

Appendix B. Solution of a Pair of Triple
Integral Equations

(B4)

(Zn-l)s2-Z nr2 ds
. j S2 - r 2/,2 _ 112 s2n'

) _ 2 -n-l ~n_l1min(T';')
Ln+l,n-l(r,1l --r 11

Jr 0

Znr2- (Zn+l)s2
s2n ds

jr2-s2jIl2- s2

=~rn+llln-l1°O
Jr max<r,,i,)

Zns 2
- (Zn+l)1l 2 ds
~2 r 2 2' ~2n+2.

V s- - r ,; s - 11 ~,

For the functions C,(s) and C(s) U=I, 3)
defined in (13b), it can be shown that

where n= 1,2, 3, ... , r(x) is the gamma function

and F( a, b, c; z) is the hypergeometric function

defined as

. T(c)
F(a, b, c, z)= T(a)T(c- a)

[I ta-I( 1_ t)c-a-l( 1-- tz)-bdl. (B3)

Using (BI)-(B3) and the expression of Ln,n(r,
11) presented in Cooke(1963), the Weber-Scha­

fheitlin integral is written in the form:

(A9)

(AIO)

ZfJ.Ul = X3¢,1 + X,1 + 1Jf.2'
ZfJ.U2=X3¢.2+ X,2-1Jf.j,
ZfJ.U3=X3¢,3-(3-4y)¢+ X,3,

) Zn
L n+l.n-l(r,1l =TMn+l.n(r, 11)

- L n+1,n+l(r, 11),

= 2}~ Mn,n-l(r, Il)-L n- I,n-l(r, 11), (BI)

The equation above shows that IJf.Jj is a function

of X3 only, which may be taken as 0 since only IJf.I
and 1Jf.2 contribute to Ul and U2' Consequently IJf
is a harmonic function. In summary, a general

solution of the Navier's equilibrium equation is
expressed as

where ¢, X ~.nd IJf are harmonic functions. For

the cylindrical coordinate, (A 10) is rewritten as
(2),

A method of solution for a pair of the triple
integral Eqs. (8a) and (8b) involving the Bessel

functions is presented. A pair of the integral Eqs.

(8a) and (8b) lead to the mixed Volterra­
Fredholm integral equations. Using the second
equation in (9), the Weber-Schafheitlin ingegral

Ln+l.n-l( r, 11) is written as

l
a

11(11) dll =F ( ) +l
a

F 1(. t) dt
s Il n- 2 j 1l 2 _S 2 1 Sst '
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Os r< a,

r>b,

O:S:r<a,Jt2 - r Z '

l°O[s-Zn +2{ (V- 2) F3(s) + v~ (s) }- 2vns

1
00

t-zn~ (t) dt + s-2n+zl
b

{ (v - 2) 12 ().)

).n& 100 {lb+ Vg2().)}~ -2vns S r zn a

).ngz()')&}dt] ds =_r-zn+2 ra

J S2_).2 J S2- r 2 )0

[(V-2) FI(t) + VGl (t) + (v-2) fa u-1

FI(u) du - (2n-1) v fa U-lGI (u) duJ
t 2n -2dt

Jr 2 -t2
'

l°Os-2n-z[vszF3(s) + (V-2)S2G3(S)

- (2n+ 1) vlstF3(t) dt- (v-2)

istG3(t) dt +l b

{ - 2vns2).nlz ().)

+ (2n+ 1) v).n+2/z().) + (v-2»).n+2g2 ().)}

& J ds - r- zn - z r a

JsZ_).Z Js 2-r2 )0

l°Ot-zn-2Vn+l(S, t){1 IuF3 (u)du}dt

= l°OVn+1(s, t)tF3(t)dt,

latzn-2Un_1 (s, t) {fau-lFI(u) du }dt

= l
a
Un-I (s, t) rlFI(t) dt, (B8)

[-2vnr 2t 2n - 2F(t) + (2n+l) VtznFl(t)

+ (v-2)tznG (t)] dt
I j rZ- t 2 '

r>b. (B7)

Solving the Abel's integral Eq. (B7) with the

relation

lTszn{vFI (s) + (v -2) Gl (s)} -2vns

istzn-zFI(t) dt + s2n+21b

{viz ().)

lrszn-z[ (v-2)FI(s) + vG I (s) + (v-2)

1at-IFl(t)dt-v(2n-1) 1arlGI(t)dt

+ l
b

{ (v-2»).z/z().) -v((2n-1)).z

z } d)' ] ds
-2ns )gz()') ).nJ).z_sz Jrz-s z

= - rzn-zl
oo

[ (v-2) t ZF3(t)

-v(2n-1) tZ~(t)+2vnrz~(t)]
dt

we obtain from (12) the following Abel's integral

equations:

Using (B4), (B5) and the relations
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where

we finally obtain (13a), Here the kernels Pij(s, tl
are given as

l °O[2ng-2n+l- (2n+l) t2gs-2n=-1
S / e- S2 j(i_ t2 dl;,

Pds, tl
_ 2 _ ,2 2n-!Ll°o~n-Idg
- 7[(2 v)s t ds s /e-s2/e-t2'

(BIO)

and the functions H,(s) U= I, ",,4) are given as

HI (s) =s2n-21b

[ (2- v) eI2(1;) + v

{(2n-l) e-2ns2}g2(1;)] e/lf-~,

H2(s) = s2n Ib[ - Vl2 (1;) - (v - 2) g:2 (1;) ]

dg + 2vn rs t2n (b 12 (g) dg dt
e/1;2- S2 s)o )a ej1;2- t2 '

H3(S)=s-2n+2!a
b

{ 2- V) el2 (g) - vC&fillclc
Js2- 1;2 <;-

+2vnsl°Ot-2n (b eg2(g) d~~dt,
s )a /t2_1;2

n(S) =S-2nl b

[{2vns2e (2n+ l)ve+2}/2(1;)

- ( - 2) .on+2 ( c)} dg (B 11)
v ~ g2 <;- /s2-e-'

Appendix C. Shear Load

The integral equations for the problem of the
annular crack under shear traction fzx= - r(r)

are written as

(v - 2) F I (s) + vGI (s) + (v - 2)

l
a

1 l a
1s 7FtCtldt-v s t-GI(t)dt

+ l°O{H3 (s, tl F3(t) + PI4 (S, t) G(t) }dt

= HtC s) , 0< s < a,
2v (SVFI(S)+(v-2)GI(s)]-- FI(t)dt
s ~o

+ l°O{H3(s, tlF3 (t) +H4(S, tlG(t)}dt

=H2 (s), O<s<a,
too G(t)

(v-2) F3(s) + vG (s) -2vs)" -pdt

+ l a
{PstCs, t)Fdt)+Ps2(S, t)GI(t)}dt

=H3 (s), s>b,
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(C2)

3vvF3(5) + (v-2) G3(5)-7

15 tF3 (t) dt - v --;; 215

tG3(t) dt
b 5 b

+l a
{P41 (5, t)F1(t)+P4Z (5, t)Gl(t)}dt

=H4(5), 5>b. (CI)

Here FJs) and G,(5) (i= I, 3) are defined as

F () zla /1 (A) dA
15 =5 5 AJAZ~5Z'

G ( ) - zlagl (A) dA
15 -5 5 AJAz-5Z'

F ( ) =15 A/3(A) dA
35 ~,

b v 5--1\-

G3(5) =15
Ag3(A) dA.

b J5 Z-AZ

The kernels Pij(5, t) are given as

(C3)

The functions H i (5) for the case of fzx= ~ fo are
given in the form:

n (5) = (V - 2) fo[ JbZ
- 5z - JaZ

- 5zJ.
H ( ) [

bZ -1 5 aZ
-1 5

Z 5 = Vfo ZSCOS b - ZSCOS a
+~J bZ-5Z-~JaZ-sz

2 2

_JlJL+JliL]
4 s 45'

H3 (5) = (V - 2) fo[J5z- aZ
- J5z- bZ J.

[
aZ bZ ]H4(5)=Vfo 7Jsz-az-7J5z-bz .

(C4)

The functions H i (5) for the case of fzx= - n ~

are given in the form:

HI (5) = 2
fb(v-2) [ bJbZ- 5z - aJaZ- 5z

+5Z
!Og{ +( bJbZ-5Z)/

( a+R=?))].

Hz (5) = ~~ [ bJbZ- 52 - aJaZ- 5z+5Z!Og

{ ( b+JbZ
- 5

z
) / ( a +JaZ

- 5
Z

) }

Appendix D. Solution of Uniform Shear
for the Case of a ~ 0

In the limiting case as a --> 0, (C I) is reduced to
the following Volterra equation:

1
~ ~(t)

(V - 2) F3(5) +V~ (5) - 2V5 5 -t-Z-dt

=H3 (5),
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sF; (s) - F3(s) =

lJF3(s) + (lJ-2) G3 (s) - 3~i 8

tF3 (t) dt
S b

- lJ--;2 iStcn(t) dt=H4 (s), WI)
S b

where a and b are constant. Using (D4) and (D I)
with s = b. it can be shown that

(D3)

(D4)

(D5)

a=ro,

/3 - lJ b2
--2~-ro •-lJ

Form (D4) and (D5), (25) is obtained.

sG3 (s) + G3 (s) =0.

Solving (D3), we get

F 3 (s) =as - ro/S2
- bZ,

G3(S) = ~.

(D2)

H3(S)=(lJ~2)ro[s~1s2_b2J.
b2 rz--z-H4 (s) = - lJro---yv' S ~ b .
S

From (Dl) and (D2), it is obtained that

where


